Conformational Analysis of (S,S)-Dimethyl-diketopyridino-18-crown-6 \dagger

Zsolt Böcskei, ${ }^{a}$ György M. Keserû ${ }^{\text {b }}{ }^{b}$ Dóra Menyhárd, ${ }^{c}$ Péter Huszthy, ${ }^{d}$ Jerald S. Bradshaw ${ }^{e}$ and Reed M. Izatt ${ }^{e}$
${ }^{a}$ Department of Chemical Research, Chinoin Pharmaceuticals, POB 110, 1325 Budapest, Hungary, ${ }^{b}$ Department of Chemical Information Technologies, Technical University of Budapest, Gellért tér 4, 1521 Budapest, Hungary, ${ }^{\text {c }}$ Department of Theoretical Chemistry, Eötvös Loránd University of Budapest, POB 32, 1518 Budapest, Hungary,
${ }^{d}$ Department of Organic Chemistry, Technical University of Budapest, Gellért tér 4, 1521 Budapest, Hungary, and ${ }^{e}$ Department of Chemistry, Brigham Young University, Provo, Utah 84602, USA

(Received 10 March 1995; accepted 14 August 1995)

Abstract

The crystal structure of (S, S)-dimethyldiketopyridino-18-crown-6, (I), $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{7}$, an effective host for chiral organic ammonium salts is described. A minimumenergy conformation was obtained by a pseudo-MonteCarlo conformational search in the gas phase and was compared with the crystal structure. Structural changes in chiral recognition processes are also discussed.

Comment

Enantiomeric recognition of chiral organic ammonium salts by chiral macrocyclic compounds is a well known phenomenon. Among many chiral crown ethers (S, S)-dimethyldiketopyridino-18-crown-6, (I), displays significant recognition (Davidson et al., 1984). The degree of enantiomeric recognition was studied by NMR spectroscopy, calorimetric titration, solvent extraction, liquid membrane transport and chromatography (Izatt, Zhu, Huszthy \& Bradshaw, 1992). The crystal structure analysis of some complexes of (I) was reported recently (Izatt, Zhu, Dalley, Curtis, Kou \& Bradshaw, 1992; Zhu, Izatt, Bradshaw \& Dalley, 1992) but the structure of the

(I)

[^0]free host molecule has never been determined. We were also interested in studying the conformation of medium size macrocyclic compounds (Böcskei \& Keserú, 1994; Keserû́, Vásárhelyi \& Makara, 1994), which led us to determine the most stable conformation of (I) in the solid state and also in the gas phase.

The preparation of compound (I) is described in the Experimental section. The crystallographic asymmetric unit contains two independent molecules which are very similar as far as their overall geometry is concerned. The bond lengths and angles are as expected except for the $\mathrm{O}_{s p^{3}}-\mathrm{C}_{s p^{3}}$ bond lengths of the macrocycle which are a little shorter than it is usual (average $1.42 \AA$).

Most of the torsion angles of the macrocycle are in either a gauche or anti conformation (Fig. 1). It is interesting to note that one of the topologically equivalent carbonyl groups is in the plane of the pyridine ring while the plane of the other forms an angle of 33 or 36° depending on which molecule we consider.
The crystal structure of the isolated host and the solidstate conformations of its complexes with (R)- and (S)[α-(1-naphthyl)ethyl]ammonium perchlorate (Davidson, Dalley, Izatt, Christensen \& Bradshaw, 1985) [(R)and (S)-complex, respectively] are compared (Fig 2). The conformation of the host has changed in both complexation processes as compared to the free form. In addition to the formation of hydrogen bonds, $\pi-\pi$ interactions also take place between the pyridine ring of the host and the naphthalene ring of the guest.
There are two major driving forces that could explain the observed behaviour and stability result. For a favourable $\pi-\pi$ interaction, the two rings must lie

Fig. 1. Molecular structure and atomic numbering for ((S, S)-dimethyl-diketopyridino-18-crown-6, (I). Displacement ellipsoids are plotted at the 50% probability level.

Fig. 2. Superposition of the crystal structure of (I) and the solid-state conformations of the host in (S) - and (R)-complexes.
stacked and parallel above each other. An upward movement of the ethyleneoxy groups on the opposite sides of the pyridine ring has to take place for the interacting O atoms of the host and the positively charged ammonium group of the guest to come into close proximity.

When complexing with the $(R)-[\alpha-(1-$ naphthyl)ethyl $]-$ ammonium ion, little distortion was seen that provided proper distances for the interacting atoms. In the case of the S cation, however, the upward movement of the host atoms was so extensive that it resulted in an overall strain of the host. Secondly, it is also worth noting that upon complexation with the S cation a conformational change has to take place in the $\mathrm{O} 20-\mathrm{C} 14$ region (our numbering) of the macrocycle so that the guest molecule could be conveniently accommodated. This change results in a relatively unfavourable value (-155.9°) for the torsion angle $\mathrm{C} 18-\mathrm{C} 17-\mathrm{O} 16-\mathrm{C} 15$ and adds considerable strain to the ring system. This effect may be partially responsible for the decreased stability of the (S) complex.
It is also worth noting that the crystal structure of the free host contains some interesting packing motifs. The crown molecules are ordered into layers along the long b axis of the unit cell. Four such layers are formed per unit cell. In all the layers there is an interesting short contact between two of the ether O atoms (O 16 and O13) and the Cl atom of the pyridine ring of another neighbouring molecule (Fig. 4.). This may be the result of a weak bifurcated $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$-type hydrogen bond.

A conformational analysis of (I) in the gas phase was also carried out via an efficient method, the systematic unbounded multiple minimum search technique (SUMM) (Goodman \& Still, 1991). This is available in the MACROMODEL computational package (Still, 1993). In the SUMM method, the generation of conformers is solved by the pseudo-random (eventually systematic) variation of the torsional angles of the temporarily opened structure followed by reclosure of the ring. The energy of the resulting structures is minimized

Fig. 3. Minimum-energy conformation of (S, S)-dimethyldiketopyrid-ino-18-crown-6, (I), obtained by SUMM conformational search. Dihedral angles in the macrocycle of the minimum-energy conformation starting at $\mathrm{N} 1-\mathrm{C} 23-\mathrm{C} 21-\mathrm{O} 20$ and progressing in the direction of C 23 (only the first atom is given for each angle): N1 -3.0, C23 161.4, C21-73.5, O20-61.1, C18 175.6, C17 174.5, O16 61.8, C15-179.2, C14 179.5, O13-61.8, C12-174.5, C11 -175.7, O10 60.9, C9 72.5, C7 -161.6, O6 4.1, C4 179.0, С3 -179°.

Fig. 4. Intermolecular interactions in the crystal lattice of (I).
to give local minima of the conformational space. The energy hypersurface of (I) was sampled by the SUMM method. The electrostatic treatment of (I) was based on our good experience of reproducing crystal structures of organic molecules by using in vacuo calculations with attenuated electrostatics (Keserũ, Kolossváry \& Nógrádi, 1995). Almost a million conformers were generated and 784 enantiomeric conformations were stored after rejections were made based on the failure of ring closure, unfavourable van der Waals interactions and the energy window ($30 \mathrm{~kJ} \mathrm{~mol}^{-1}$ above the global mini-
mum). In addition to the lowest energy conformation (E $=140.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$) shown in Fig. 3, the conformation corresponding to the X-ray structure of (I) ($E=154.1$ $\mathrm{kJ} \mathrm{mol}{ }^{-1}$) was also found.

The most characteristic difference between the calculated global minimum and the crystal structure is the relative orientation of the carboxylate and the pyridine ring planes. Contrary to the solid-state structure, in the energy minimized conformer both carbonyloxy planes are coplanar with the pyridine ring.

Experimental

Compound (I) was prepared in the same way as described for the preparation of the di-tert-butyl analogue (Huszthy, Bradshaw, Zhu, Izatt \& Lifson, 1991) and was recrystallized from methanol to give suitable crystals for the X-ray study.

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{7}$
$M_{r}=353.36$
Orthorhombic
$P 2_{1} 2_{1} 2_{1}$
$a=9.463$ (5) \AA
$b=42.025(4) \AA$
$c=9.089$ (4) \AA
$V=3614.6(25) \AA^{3}$
$Z=8$
$D_{x}=1.299 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Rigaku AFC-6S four-circle diffractometer
$\omega-2 \theta$ scans
Absorption correction:
none
3970 measured reflections
3970 independent reflections
2039 observed reflections
$[I>2 \sigma(I)]$
Refinement
Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.0574$
$w R\left(F^{2}\right)=0.1682$
$S=1.282$
3917 reflections
451 parameters
Only H-atom U 's refined
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0420 P)^{2}\right.$
+10.0620 P]
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=-0.001$
$\mathrm{Cu} K \alpha$ radiation
$\lambda=1.54180 \AA$
Cell parameters from 23 reflections
$\theta=18.84-25.16^{\circ}$
$\mu=0.851 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Plate
$0.5 \times 0.4 \times 0.1 \mathrm{~mm}$
Transparent

$$
\begin{aligned}
& \theta_{\max }=75.11^{\circ} \\
& h=-11 \rightarrow 11 \\
& k=-34 \rightarrow 52 \\
& l=-11 \rightarrow 11
\end{aligned}
$$

3 standard reflections monitored every 150 reflections intensity decay: none

$$
\begin{aligned}
& \Delta \rho_{\max }=0.277 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.311 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Extinction correction: SHELXL93 (Sheldrick, 1993)

Extinction coefficient: 0.00086 (14)

Atomic scattering factors from International Tables for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.4)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (\AA^{2})

$U_{\text {eq }}=(1 / 3) \sum_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
05	0.6425 (9)	0.66090 (14)	0.1558 (9)	0.077 (3)
06	0.7421 (7)	0.70250 (13)	0.2698 (7)	0.047 (2)
010	0.9183 (7)	0.72343 (14)	0.5073 (8)	0.056 (2)

$0.9178(8)$
$0.8298(7)$
$0.6295(8)$
$0.6521(10)$
$0.6551(8)$
$0.5068(11)$
$0.5509(11)$
$0.6256(10)$
$0.6710(11)$
$0.7750(11)$
$0.9022(12)$
$0.7929(11)$
$0.9503(13)$
$0.8715(13)$
$0.853(13)$
$0.8906(13)$
$0.6812(11)$
$0.6293(11)$
$0.4793(12)$
$0.6353(11)$
$0.691(10)$
$0.5363(11)$
$0.9061(8)$
$1.0123(6)$
$1.2434(7)$
$1.2804(7)$
$1.0575(7)$
$0.8698(6)$
$0.6424(7)$
$0.8178(7)$
$0.5732(10)$
$0.6767(5)$
$0.7955(5)$
$0.9091(5)$
$1.1297(5)$
$1.0896(11)$
$1.2554(10)$
$1.3663(10)$
$1.3820(9)$
$1.3056(10)$
$1.1902(10)$
$1052(10)$
$0.9007(10)$
$0.8779(13)$
$0.7373(9)$
$0.7140(9)$
$0.5903(9)$

0.79500 (14)	0.5417 (8)	0.059 (2)
0.83963 (15)	0.3080 (8)	0.057 (2)
0.80600 (12)	0.1212 (7)	0.049 (2)
0.8149 (2)	-0.1185 (8)	0.079 (3)
0.7426 (2)	0.0655 (8)	0.045 (2)
0.7213 (2)	-0.1815 (11)	0.057 (3)
0.6999 (2)	-0.0755 (11)	0.060 (3)
0.7119 (2)	0.0439 (10)	0.045 (2)
0.6886 (2)	0.1610 (11)	0.054 (3)
0.6829 (2)	0.3988 (10)	0.052 (3)
0.6630 (2)	0.3704 (13)	0.072 (3)
0.7058 (2)	0.5238 (11)	0.056 (3)
0.7423 (2)	0.6337 (11)	0.067 (3)
0.7727 (2)	0.6472 (11)	0.062 (3)
0.8257 (2)	0.5680 (12)	0.070 (3)
0.8474 (2)	0.4451 (12)	0.069 (3)
0.8450 (2)	0.3036 (11)	0.056 (3)
0.8407 (2)	0.1506 (11)	0.051 (3)
0.8528 (2)	0.1304 (13)	0.074 (4)
0.7973 (2)	-0.0167 (10)	0.046 (2)
0.7622 (2)	-0.0398 (10)	0.043 (2)
0.7533 (2)	-0.1639 (10)	0.055 (3)
1.08803 (13)	0.0569 (9)	0.072 (2)
1.04763 (12)	0.1770 (7)	0.047 (2)
1.02988 (14)	0.3667 (7)	0.052 (2)
0.95906 (15)	0.3562 (8)	0.055 (2)
0.91311 (15)	0.2662 (8)	0.055 (2)
0.94276 (12)	0.0609 (8)	0.049 (2)
0.93377 (15)	0.1127 (9)	0.066 (2)
1.00636 (15)	0.0877 (8)	0.042 (2)
1.0268 (2)	-0.0535 (12)	0.056 (3)
1.04786 (10)	-0.0146 (6)	0.057 (3)
1.03680 (10)	0.0563 (6)	0.041 (2)
1.06023 (10)	0.0967 (6)	0.049 (2)
1.06886 (10)	0.2155 (6)	0.049 (2)
1.0886 (2)	0.3489 (11)	0.058 (3)
1.0486 (2)	0.2384 (11)	0.050 (3)
1.0118 (2)	0.3996 (12)	0.056 (3)
0.9821 (2)	0.3114 (12)	0.055 (3)
0.9291 (2)	0.2893 (13)	0.062 (3)
0.9061 (2)	0.3283 (14)	0.062 (3)
0.9052 (2)	0.1144 (11)	0.050 (3)
0.9087 (2)	0.0639 (11)	0.050 (3)
0.8957 (2)	-0.0899 (12)	0.066 (3)
0.9512 (2)	0.0814 (11)	0.044 (2)
0.9858 (2)	0.0500 (11)	0.041 (2)
0.9950 (2)	-0.0166 (11)	0.048 (3)

Table 2. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

O5-C4	1.198 (9)	O5'- $\mathrm{C4}^{\prime}$	1.223 (7)
O6-C4	1.330 (10)	O6 ${ }^{\prime}-\mathrm{C}^{\prime}{ }^{\prime}$	1.329 (7)
O6-C7	1.466 (10)	O6'-C7 ${ }^{\prime}$	1.467 (7)
O10-C9	1.407 (11)	O10 ${ }^{\prime}$ - $\mathrm{C}^{\prime}{ }^{\prime}$	1.411 (10)
O10-C11	1.429 (11)	O10'-C11 ${ }^{\prime}$	1.422 (10)
$\mathrm{O}^{13-\mathrm{C} 12}$	1.409 (11)	O13'--C14'	1.419 (10)
O13-C14	1.439 (11)	O13'--C12 ${ }^{\prime}$	1.424 (10)
O16-C15	1.410 (11)	O16 ${ }^{\prime}$ - $\mathrm{Cl}^{\prime} 5^{\prime}$	1.408 (11)
O16-C17	1.425 (11)	O16 ${ }^{\prime}$ - $\mathrm{Cl}^{\prime}{ }^{\prime}$	1.420 (11)
O20-C21	1.307 (10)	O20'- $\mathrm{C} 21^{\prime}$	1.317 (10)
O20-C18	1.482 (8)	$\mathrm{O} 20^{\prime}-\mathrm{C} 18^{\prime}$	1.462 (8)
O22-- 21	1.194 (10)	$\mathrm{O} 22^{\prime}-\mathrm{C} 21^{\prime}$	1.193 (9)
N1-C23	1.336 (10)	N1'-C3'	1.328 (7)
N1-C3	1.332 (9)	N1'-C23'	1.352 (9)
C7-C9	1.498 (12)	C7'-C9'	1.478 (10)
C11-C12	1.486 (13)	$\mathrm{C} 11^{\prime}-\mathrm{C12}{ }^{\prime}$	1.489 (12)
C14-C15	1.480 (13)	C14 ${ }^{\prime}$ - $\mathrm{Cl}^{\prime} 5^{\prime}$	1.500 (13)
C17--C18	1.486 (13)	C17 ${ }^{\prime}$ - $\mathrm{C} 18^{\prime}$	1.503 (12)
C21-C23	1.514 (10)	C21 ${ }^{\prime}-\mathrm{C} 23^{\prime}$	1.498 (10)
C4-06-C7	117.2 (6)	$\mathrm{C} 4^{\prime}-\mathrm{O}^{\prime}-\mathrm{Cl}^{\prime}$	116.4 (5)
$\mathrm{C} 9-\mathrm{O10}-\mathrm{Cl1}$	112.7 (8)	$\mathrm{C}^{\prime}-\mathrm{Ol0}{ }^{\prime}-\mathrm{Cl1}^{\prime}$	113.9 (7)
C12-O13-C14	110.7 (8)	$\mathrm{Cl} 4^{\prime}-\mathrm{O13}{ }^{\prime}-\mathrm{Cl2}^{\prime}$	111.6 (7)
C15-O16-C17	113.0 (8)	$\mathrm{Cl5}$ - $\mathrm{Ol}^{\prime}{ }^{\prime}-\mathrm{C17}{ }^{\prime}$	112.2 (8)
$\mathrm{C} 21-\mathrm{O} 20-\mathrm{C} 18$	116.6 (6)	$\mathrm{C} 21^{\prime}-\mathrm{O} 20^{\prime}-\mathrm{C} 18^{\prime}$	116.9 (7)
$\mathrm{C} 23-\mathrm{N} 1-\mathrm{C} 3$	115.0 (7)	$\mathrm{C} 3^{\prime}-\mathrm{Nl}^{\prime}-\mathrm{C} 23^{\prime}$	116.4 (6)
N1-C3-C2	125.0 (8)	$\mathrm{N1}{ }^{\prime}-\mathrm{C} 3^{\prime}-\mathrm{C} 4^{\prime}$	117.7 (4)
$\mathrm{O} 6-\mathrm{C} 4-\mathrm{C} 3$	112.7 (7)	O6 ${ }^{\prime}-\mathrm{C} 4^{\prime}-\mathrm{C}^{\prime}$	113.5 (3)

O6-C7-C9	105.7 (7) 06	$\mathrm{O}^{\prime}{ }^{\prime}-\mathrm{Cl}^{\prime}-\mathrm{Ca}^{\prime}$	107.0 (5)
O10-C9-C7	110.6 (8) 01	O10'-C9'-C7 ${ }^{\prime}$	111.9 (7)
O10-C11-C12	2116.0 (9) O1	O10'-C11'-C12	114.6 (8)
$\mathrm{Ol3-C12-C11}$	111.0 (9) O13	O13'-C12 ${ }^{\prime}-\mathrm{Cl1}^{\prime}$	110.4 (8)
O13-C14-C15	5109.5 (9) 013	O13'- $\mathrm{Cl}^{\prime}{ }^{\prime}-\mathrm{Cl15}{ }^{\prime}$	110.4 (8)
O16-C15-C14	$4 \quad 115.7$ (9) O1	O16 ${ }^{\prime}$ - $\mathrm{Cl5}^{\prime}$ - ${\mathrm{Cl} 14^{\prime}}^{\prime}$	114.8 (8)
O16-C17-C18	109.4 (8) O1	O16 ${ }^{\prime}-\mathrm{C17}{ }^{\prime}-\mathrm{C} 18^{\prime}$	108.3 (8)
C17-C18-020	106.8 (7) O20	O20 ${ }^{\prime}-\mathrm{C} 18^{\prime}-\mathrm{C} 17^{\prime}$	106.9 (7)
O20-C21-C23	113.5 (7) O20	O20 ${ }^{\prime}$ - $\mathrm{C21}^{\prime}$ - $\mathrm{C} 23{ }^{\prime}$	112.0 (7)
$\mathrm{N} 1-\mathrm{C} 23-\mathrm{C} 21$	116.7 (7) N1	$\mathrm{N1}^{\prime}-\mathrm{C} 23^{\prime}-\mathrm{C} 21^{\prime}$	117.7 (7)
	C7-06-C4-C3	172.1 (8)	
	$\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O6}$	-2.9 (13)	
	C4-O6-C7-C9	-155.4 (8)	
	C11-010-C9-C7	-171.7 (8)	
	O6-C7-C9-010	-70.7 (10)	
	C9-O10-C11-C12	-79.8 (11)	
	C14-013-C12-C11	-172.1 (9)	
	O10-C11-C12-013	-71.2 (12)	
	C12-O13-C14-C15	-172.7 (9)	
	C17-016-C15-C14	70.8 (12)	
	O13-C14-C15-016	67.1 (13)	
	C15-016-C17-C18	172.1 (7)	
	O16-C17-C18-020	74.0 (10)	
	C21-O20-C18-C17	-157.2 (9)	
	C18-O20-C21-C23	-169.8 (8)	
	C3- $\mathrm{N} 1-\mathrm{C} 23-\mathrm{C} 21$	177.7 (9)	
	O20-C21-C23-N1	-33.7 (13)	
	$\mathrm{C7}^{\prime}-\mathrm{O6}^{\prime}-\mathrm{C4}^{\prime}-\mathrm{C3}^{\prime}$	177.7 (4)	
	$\mathrm{N1}^{\prime}-\mathrm{C3}^{\prime}-\mathrm{C4}^{\prime}-\mathrm{O}^{\prime}{ }^{\prime}$	-8.0 (5)	
	$\mathrm{C4}{ }^{\prime}-\mathrm{O6}^{\prime}-\mathrm{Cl}^{\prime}-\mathrm{C9}^{\prime}$	-153.8 (5)	
	$\mathrm{C11}$ - $\mathrm{Ol0}^{\prime}-\mathrm{C9}^{\prime}-\mathrm{Cl}^{\prime}$	-175.4 (7)	
	O6 ${ }^{\prime}-\mathrm{Cl}^{\prime}-\mathrm{Cl}^{\prime}-\mathrm{OlO}^{\prime}$	-69.5 (8)	
	$\mathrm{C9}^{\prime}-\mathrm{OlO}^{\prime}-\mathrm{Cl1}^{\prime}-\mathrm{Cl2}^{\prime}$, -79.2 (10)	
	$\mathrm{C14}{ }^{\prime}-\mathrm{Ol3}^{\prime}-\mathrm{Cl2}^{\prime}-\mathrm{Cl1}^{\prime}$	-171.5 (8)	
	$\mathrm{O} 10^{\prime}-\mathrm{Cl1}^{\prime}-\mathrm{Cl2}^{\prime}-\mathrm{Ol3}^{\prime}$	$3^{\prime} \quad-71.3$ (10)	
	$\mathrm{C} 12^{\prime}-\mathrm{O13}{ }^{\prime}-\mathrm{Cl14}^{\prime}-\mathrm{Cl5}^{\prime}$	$5^{\prime}-175.2$ (9)	
	C17 ${ }^{\prime}$-016 ${ }^{-} \mathrm{C} 15^{\prime}$ - $\mathrm{C} 14^{\prime}$	$4^{\prime} \quad 75.7$ (11)	
	$\mathrm{O} 13^{\prime}-\mathrm{C14}{ }^{\prime}-\mathrm{C15}{ }^{\prime}-\mathrm{Ol}^{\prime}$	$6^{\prime} \quad 68.7$ (12)	
	$\mathrm{C15}{ }^{\prime}-\mathrm{Ol}^{\prime}-\mathrm{C} 17^{\prime}-\mathrm{C} 18^{\prime}$	$8^{\prime} \quad 171.3$ (7)	
	$\mathrm{C} 21^{\prime}-\mathrm{O}^{\prime 2}{ }^{\prime}-\mathrm{C18} 8^{\prime}-\mathrm{C} 17^{\prime}$	$7^{\prime} \quad-152.1$ (9)	
	O16 ${ }^{\prime}-\mathrm{C17}{ }^{\prime}-\mathrm{C18} 8^{\prime}-\mathrm{O} 20^{\prime}$	$0^{\prime} \quad 71.1$ (9)	
	$\mathrm{C1} 8^{\prime}-\mathrm{O20}^{\prime}-\mathrm{C} 21^{\prime}-\mathrm{C} 23^{\prime}$	$3^{\prime}-170.0$ (8)	
	$\mathrm{C3}^{\prime}-\mathrm{N1}{ }^{\prime}-\mathrm{C} 23^{\prime}-\mathrm{C} 21^{\prime}$	178.9 (7)	
	$\mathrm{O20}^{\prime}-\mathrm{C21}^{\prime}-\mathrm{C} 23^{\prime}-\mathrm{N1}^{\prime}$, -36.7 (13)	

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988). Cell refinement: MSC/AFC Diffractometer Control Software. Data reduction: TEXSAN PROCESS (Molecular Structure Corporation, 1992). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993).

The authors wish to thank Chinoin Pharmaceuticals for supporting the project with manpower and instrumentation. JSB and RMI are grateful for the financial support of the Office of Naval Research. One of us (GMK) is grateful for the Magyary Zoltán fellowship of the Foundation for Hungarian Higher Education and Research.

Lists of structure factors, anisotropic displacement parameters, H atom coordinates and complete geometry have been deposited with the IUCr (Reference: KA1127). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Böcskei, Zs. \& Keserú, G. M. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 595-597.

Davidson, R. B., Bradshaw, J. S., Jones, B. A., Dalley, N. K., Christensen, J. J., Izatt, R. M., Morin, F. G. \& Grant, D. M. (1984). J. Org. Chem. 49, 353-357.

Davidson, R. B., Dalley, N. K., Izatt, R. M., Christensen, J. J. \& Bradshaw, J. S. (1985). Isr. J. Chem. 25, 33-38.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Goodman, J. M. \& Still, W. C. (1991). J. Comput. Chem. 12, 1110 1117.

Huszthy, P., Bradshaw, J. S., Zhu, C.-Y., Izatt, R. M. \& Lifson, S. (1991). J. Org. Chem. 56, 3330-3336.

Izatt, R. M., Zhu, C.-Y., Dalley, N. K., Curtis, J. C., Kou, X. \& Bradshaw, J. S. (1992). J. Phys. Org. Chem. 5, 656-662.
Izatt, R. M., Zhu, C.-Y., Huszthy, P. \& Bradshaw, J. S. (1992). Crown Ethers: Toward Future Application, edited by S. R. Cooper, pp. 207-233. New York: VCH Press.
Keserú, G. M., Kolossváry, I. \& Nógrádi, M. (1995). J. Mol. Struct. In the press.
Keserũ, G. M., Vásárhelyi, H. \& Makara, G. (1994). J. Mol. Struct. 326, 151-155.
Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1992). TEXSAN. Single Crystal Structure Analysis Package. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Still, W. C. (1993). MACROMODEL4.0. Columbia University, USA.
Zhu, C.-Y., Izatt, R. M., Bradshaw, J. S. \& Dalley, N. K. (1992). J. Incl. Phenom. 13, 17-27.

Acta Cryst. (1996). C52, 466-468

1:1 Adduct of Tris(4-hydroxy-3,5-dimethylbenzyl)amine and Hexamethylenetetramine

Pauline J. de Bruyn, Robert W. Gable, Alan C. Potter and David H. Solomon

School of Chemistry, The University of Melbourne, Parkville, Victoria 3052, Australia
(Received 23 March 1995; accepted 10 August 1995)

Abstract

The title compound $\left\{4,4^{\prime}, 4^{\prime \prime}\right.$-(nitrilotrimethylene)tris(2,6 -dimethylphenol)-1,3,5,7-tetraazatricyclo[3.3.1.1 ${ }^{3,7}$]decane (1/1), $\left.\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{NO}_{3} . \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~N}_{4}\right\}$ crystallizes in the space group $R \overline{3}$, with hydrogen-bonded layers perpendicular to the symmetry axes. All molecules lie on threefold rotation axes. Each triphenol molecule is hydrogen bonded to three hexamethylenetetramine molecules and each hexamethylenetetramine molecule is hydrogen bonded to three triphenol molecules. The hydrogen bonds are similar to those found in other adducts of hexamethylenetetramine with phenols.

[^0]: \dagger Alternative nomenclature: 4,14-dimethyl-3,6,9,12,15-pentaoxa-21-azabicyclo[15.3.1]henicosa-1(21),17,19-triene-2,16-dione.

